Gen tedavisi

Gen tedavisi

Hastalıkları tedavi etme ya da fiziksel etkilerini azaltma amacıyla hastanın vücuduna genetik materyalin sokulması, tıp tarihinde bir devrim olmuştur. İlk başlarda genetik hastalıkların tedavisi amacıyla planlanan gen terapisi artık, kanser, AIDS gibi diğer pek çok hastalığın tedavisi için de kullanılmaya başlanmıştır.

Genlerin tanımlanması ve genetik mühendisliğinde kaydedilen önemli gelişmeler sonunda bilim adamları artık hastalıklarla savaşabilmek ve onlardan korunabilmek için bazı örneklerde genetik materyali değiştirme aşamasına geldiler.
Gen terapisinin temel amacı, hücrelerin hastalığa yol açan eksik ya da kusurlu genleri yerine, sağlıklı kopyalarının hücreye yerleştirilmesidir. Bu işlem, gerçek anlamda bir devrimdir. Hastaya, genetik bozukluktan kaynaklanan semptomların kontrol edilmesi ve/veya tedavisi için ilaç verilmiyor. Bunun yerine, sorunun kaynağına inilip hastanın bozuk genetik yapısı düzeltilmeye çalışılıyor.
Çeşitli gen terapisi stratejileri olmakla birlikte, başarılı bir gen terapisi için gereken ortak temel elemanlar vardır. Bunların en önemlisi hastalığa neden olan genin belirlenmesi ve klonlanmasıdır. "Human Genome Project" olarak adlandırılan ve insanın gen haritasını çıkarmayı amaçlayan proje tamamlandığında, istenilen genlere ulaşmanın çok daha kolay olacağına inanılmaktadır. Genin tanımlanmasından sonraki aşamada, genin hedeflenen hücrelere nakledilmesi ve orada ekspresyonu, yani kodladığı proteinin üretimi gelir. Gen terapisinin öteki önemli elemanlarıysa tedavi edilmek istenilen hastalığı ve gen nakli yapılacak hücreleri iyi tanımak ve gen naklinin olası yan etkilerini anlamaktır.
Gen terapisi iki ana kategoride incelenebilir: Eşey hücresi ve vücut hücresi gen terapisi. Eşey hücresi gen terapisinde, genetik bir bozukluğu önlemek için eşey hücrelerinin (sperm ya da ovum) genleri değiştirilir. Bu tip terapide, genlerde yapılan değişiklik kuşaktan kuşağa aktarılabileceğinden, olası bir eşey hücresi gen terapisi hem etik, hem de teknik sorunlar yaratacaktır. Öte yandan vücut hücresi gen terapisi eşey hücrelerini etkilemez; sadece ilgili kişiyi etkiler. Günümüzde yapılan gen terapisi çalışmalarının çoğu vücut hücresi gen terapisidir.
Gen terapisi aynı zamanda bir ilaç taşıma sistemi olarak da kullanılabilir. Burada ilaç, nakledilen genin kodladığı proteindir. Bunun için, istenilen proteini kodlayan bir gen, hastanın DNA'sına yerleştirilebilir. Örneğin ameliyatlarda, pıhtılaşmayı önleyici bir proteini kodlayan gen, ilgili hücrelerin DNA'sına yerleştirilerek, tehlikeli olabilecek kan pıhtılarının oluşumu önlenebilir.
Gen terapisinin ilaç taşınmasında kullanılması, aynı zamanda, hem harcanan güç ve emeği hem de parasal giderleri azaltabilir. Böylece, genlerin ürettiği proteinleri çok miktarda elde etmek, bu ürünleri saflaştırmak, ilaç formülasyonunu yapmak ve bunu hastalara vermek gibi, çok zaman alan karmaşık işlemlere gerek kalmayabilir.

Gen Terapisinin Temel Sorunları
Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar.
Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır.
Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar.
Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikroparçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır.
Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır.
Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır.
En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır.

Genlerin Vücuda Sokulma Yöntemleri
Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuvar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir.

Engeller
Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır.
Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir.
In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanısıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez.
Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir.
Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir.
In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da
bazı sakıncaları vardır.

İlk Gen Terapisi
İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi. Ex vivo gen terapisi stratejisinin kullanıldığı yöntemde, adenozin deaminaz enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tipi kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA enzimini üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamsal tehlike yaratabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır.
ADA eksikliğinin ilk insan gen terapisi denemesi olarak seçilmesinin bazı nedenleri vardır. Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen terapisinin başarı ihtimalini arttırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir: Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteininin miktarının çok doğru şekilde kontrol edilmesi gerekmez.
Bu ilk insan gen terapisi 2 hasta çocuk üzerinde gerçekleştirildi. Terapide, hastaların hücreleri (T-lenfosit) alınarak laboratuvar şartlarında doku kültürü yoluyla çoğaltıldı. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledildi. Virüs hücrelere girerek genetik materyale geni yerleştirdi. Genetik olarak başarıyla değiştirilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltıldı. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verildi. Bu işlem, yani T hücrelerinin hastadan alınması, laboratuvar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlandı. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edildi. Tedavi sonucunda iki çocukta da iyileşme kaydedildi.
Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler, ve AIDS gibi hastalıklarla başa çıkmak için gen terapileri tasarlandı.
Kanser tedavisi için bilim adamları, savunma sistemi hücrelerini gen terapisi yoluyla değiştirerek kanserli hücrelerin üzerine göndermeye çalışıyorlar. Amaç, vücuttan alınan bu hücrelerin, kanserle mücadeleyi sağlayan genlerle silahlandırılıp tekrar vücuda verilmesi ve böylece bu hücrelerin kanserle daha iyi savaşmalarını sağlamak. Bu konudaki klinik deneyler sürmektedir.
Alternatif olarak, kanser hücreleri vücuttan alınıp, daha güçlü bir savunma tepkisi çekebilecek şekilde genetik olarak değiştirilebilir. Bu hücreler daha sonra, bir çeşit kanser aşısı gibi reaksiyon göstermeleri umuduyla tekrar vücuda verilebilir. Bu konudaki klinik deneylere başlanmıştır.
Öte yandan tümörlere, bunları bazı antibiyotik ve diğer ilaçlar için çekici kılabilecek genler de nakledilebilir. Daha sonra yapılacak ilaç tedavisi, sadece bu genleri taşıyan (yani kanserli) hücreleri öldürecektir. Şu anda bu gibi iki klinik deney, beyin tümörlerinin tedavisi amacıyla yürütülmektedir.
Gen terapisi vücudun savunma hücrelerini AIDS virüsüne karşı dirençli hale getirmek için de kullanılabilir.

Gen Terapisinin Riskleri
Virüsler normalde birden fazla hücre çeşidini enfekte edebilirler. Bu nedenle, vücuda genleri taşıyan virüs kökenli vektörler de, sadece hedeflenen hücreleri değil, başka hücreleri de enfekte edip, yeni geni bu istenmeyen hücrelere taşıyabilir. Ayrıca, ne zaman DNA'ya yeni bir gen eklense, bu genin yanlış bir yere yerleşme tehlikesi de vardır. Bu durum, kansere ya da başka bozukluklara yol açabilir. Bundan başka, DNA bir tümöre doğrudan doğruya enjekte edildiğinde, ya da gen nakli için lipozom sistemi kullanıldığında, taşınan yabancı genlerin, çok düşük de olsa istemeyerek eşey hücrelerine girmesi ihtimali vardır. Bu durumda yapılan değişiklik kalıtsal olacak ve sonraki kuşaklara aktarılacaktır. Ancak böyle bir duruma hayvan deneylerinde rastlanmamıştır. Başka bir sorun da, nakli yapılan genin ekspresyonunun çok yüksek oranda olması ve sonucunda da eksikliği hastalığayol açan proteinin yarardan çok zarar getirecek kadar çok miktarda üretilmesi olasılığıdır.
Bilim adamları, bütün bu riskleri ortadan kaldırmak amacıyla hayvan deneyleri yapmaktadırlar. Alınan önlemler başarılı olmuştur, şu ana değin insanlara uygulanan gen terapilerinde bu potansiyel sorunlar görülmemiştir.
Gen Terapisinin Çözüm Bekleyen Sorunları
İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorunsa, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır. Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir.
Yukarıda açıklanan yöntemler bugüne değin 300 klinik daneyde 6000 hasta üzerinde kullanılmıştır. Ancak, şu ana değin gerçekten başarılı bir sonuç elde edildiği ileri sürülemez. Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeriyse denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Ayrıca, denemelerin büyük bir bölümünün kanser hastalarında yapılmış olması yeni bir sorun yaratmaktadır: Hastaların ölümlerinden dolayı tedaviyi izleyememek.
Şu anki duruma göre, önümüzdeki yıllarda gen terapisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen terapisinin başarılı
sonuçlar vereceğine inabiliriz.

Armağan Koçer Sağıroğlu
Danışman: Bekir Sıtkı Şaylı
Top